
On-disk filesystem structuresOn-disk filesystem structures

Jan van WijkJan van Wijk

Filesystem on-disk structures forFilesystem on-disk structures for
FAT, HPFS, NTFS, JFS, EXT2 and ReiserFSFAT, HPFS, NTFS, JFS, EXT2 and ReiserFS

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

Presentation contentsPresentation contents

 Generic filesystem architecture

 FAT, File Allocation Table

 HPFS, High Performance FileSystem

 NTFS, New Technology FileSystem

 JFS, Journalled File System

 EXT2 and EXT3 Linux filesystems

 ReiserFS, Linux filesystem

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

Who am I ?Who am I ?

 Jan van Wijk
 Software Engineer, C, Rexx, Assembly
 Founded FSYS Software in 2001
 First OS/2 experience in 1987, developing parts

of OS/2 1.0 EE (Query Manager, later DB2)
 Used to be a systems-integration architect at a

large bank, 500 servers and 7500 workstations

 Home page: http://www.dfsee.com

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

Information in a filesystemInformation in a filesystem

 Generic volume information
 Bootsector, superblocks, special files ...

 File and directory descriptive info
 Directories, FNODEs, INODEs, MFT
 Hierachy of files/directories

 Freespace versus used areas
 Allocation-table, bitmap

 Used areas for each file/directory
 Allocation-table, run-list, bitmap

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

File Allocation TableFile Allocation Table

 The FAT filesystem was derived from older
CPM filesystems for the first (IBM) PC

 Designed for diskettes and small harddisks
 Later expanded with sub-directory support

to allow larger hierarchical filesystems

 Supported natively by the OS/2 kernel
 Enhancements in installable filessystems

like FAT32.IFS and VFAT.IFS

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

FAT(16) Volume layoutFAT(16) Volume layout

Boot-Record

Data area

Root-Directory

2nd FAT area

1st FAT area

 Bootsector, bootcode, labels
and geometry/size info (BPB)

 File Allocation table, 12/16 bits
for every cluster in the volume

 Exact duplicate of 1st FAT

 Fixed size, fixed position

 First data located at cluster 2
 Has clusters of filedata as well

as clusters with sub-directories

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

The Allocation TableThe Allocation Table

 The actual File Allocation Table has ONE value
for every allocation unit (cluster):

 Free, the cluster is NOT in use, value is 0 (zero)
 2 .. max, location of the NEXT cluster in the chain
 EOF, end of file, this is the last cluster in the chain
 BAD, the cluster is unusable due to bad sectors

 Each value can be 12 bits, 16 bits or 32 bits
depending on volume and cluster size.

 A directory entry points to the FIRST cluster of
an 'allocation chain'

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

FAT Allocation ChainFAT Allocation Chain

 1cluster.dat 12

 anyfile.doc 23

 2cluster.dat 31

 fragment.c 43

 ?eleted.txt 127

Directory entries Part of the FAT area

EOF

EOF EOF

EOF32

16

44 15

1 2 3 4 5 6

10

20

30

40

50

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

FAT directory entriesFAT directory entries

 A basic FAT directory entry contains:
 8 character BASE filename
 3 character file extension
 1 byte attribute with RO, System, Hidden etc
 4 byte date and time information
 2 bytes (16-bit) cluster-number for FIRST cluster
 4 bytes (32-bit) filesize, maximum value 2 Gb

 OS/2, FAT32 and VFAT may add:
 2 bytes index value to OS2 extended-attributes
 2 bytes extra cluster number, making it 32-bit
 Extra create/access date and time fields (VFAT)

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

Common problems with FATCommon problems with FAT

 Combined file-allocation and freespace
administration (no redundancy) may cause:

 Lost clusters, allocated but no directory link
 Cross-links, clusters that are in more than 1 chain
 Undelete will be UNRELIABLE for fragmented files

because the cluster allocation is unknown after the
file is erased. (clusters marked FREE)

 OS/2 specific EA related problems:
 stored in one huge file “EA DATA . SF”
 Linked from an index in the FAT directory entry, can

be damaged by other OS's or defragmenters

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

FAT32 Volume layoutFAT32 Volume layout

Spare-Boot (6-7)

Data area

2nd FAT area

1st FAT area

 Bootsector, bootcode, label, geo
and size info (BPB). Location of
Root directory, freespace size

 File Allocation table, 32 bits
for every cluster in the volume

 Exact duplicate of 1st FAT

 First data located at cluster 2
(usually the Root directory)

 Has clusters of filedata as well
as clusters with directories

Boot-Record (0-1)

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

High Performance File SystemHigh Performance File System

 Designed by MS and IBM to overcome the
shortcommings of the FAT filesystem

 Based on UNIX-like Fnodes and B-trees

 Designed for larger harddisks (> 100 MiB)

 More redundancy, less sensitive to crashes
 B-trees, fragmentation is less of a problem

 Implemented as Installable Filesystem with
dedicated caching (HPFS.IFS, HPFS386.IFS)

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

HPFS Features and limitsHPFS Features and limits

 FS-size upto 2 terabyte (2048 GiB) by design
 OS/2 implementation limit of 64 GiB due to

shared cache design (5 bits of 32 for cache use)

 Allocation in single 512-byte sectors

 Filename maximum length of 254 characters
 Support for multiple codepages for filenames

 B-trees used for allocation and directories

 Multi-level cache: Paths, Directories and Data

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

HPFS Volume layoutHPFS Volume layout

Boot-Record

Data area

Superblock (10)
Spareblock (11)

Volume Admin

Bitmap tables (14)

 Bootsector with HPFS bootcode
 Fixed volume-information

pointer to Root-directory
 Variable volume-information

 Division in 8 MiB data bands
 Codepage, Hotfix, Spare etc

 Pre-allocated DIR-blocks, 1%
in middle of volume (max 800 Mb)

 Separate Directory-BITMAP

 Filedata + extra allocation and
directory blocks when needed

Directory band

Bitmap

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

HPFS data-bands layoutHPFS data-bands layout

 Data Bands:

 Are of a FIXED size of 8 MiB
(128 per gigabyte partition size)

 Each have a freespace BITMAP
that are located at the start or at
the end (alternating) so they are
back-to-back

 Maximum UNFRAGEMENTED
filesize is almost 16 MiB

Data band (8 MiB)

Bitmap (2 KiB)

Data band (8 MiB)

Bitmap (2 KiB)

Data band (8 MiB)

Bitmap (2 KiB)

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

HPFS File allocationHPFS File allocation

Superblock

 Root-LSN FNODE
 (dir)
Alloc-LSN

FNODE
 (file)
Alloc-LSN
Alloc-LSN

Dir-Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

Data-extent-1

Data-extent-2

Allocation example for a
file in the root directory
with 2 data fragments

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

HPFS Fnode layoutHPFS Fnode layout

 An Fnode is 512 bytes with fixed size info:
 Unique binary signature string 'ae 0a e4 f7'
 Sectornumber (LSN) for Parent directory
 First 15 characters of the filename (short name)
 Length of filename, and length of the filedata
 Type of the Fnode, either File or Directory
 Allocation information, max of 8 LSN+size pairs
 DASD limits (user quota, HPFS386 only)

 Then, variable sized info may be present,
either in the Fnode itself or externally:

 Extended-attribute data (.longname, .icon etc)
 Access Control Lists (HPFS386 only)

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

HPFS DirBlock layoutHPFS DirBlock layout

 A DirBlock is 2048 bytes with fixed size info:
 Unique binary signature string 'ae 0a e4 77'
 LSN for Parent and type Fnode or DirBlock (B-tree)
 Sectornumber for THIS Directory-Block
 Number of changes since creation of the block

 Then, variable sized Directory info with:
 A B-tree 'down' pointer (DirBlock LSN), OR
 Three date/time fields creation, modify, last access
 The standard (FAT, SHRA) attributes
 File data length and extended-attribute length
 Codepage number to use with the filename
 Variable sized filename, max 254 characters

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

HPFS Fragmented FileHPFS Fragmented File

FNODE
 (dir)
Alloc-LSN

FNODE
 (file)
Alloc-LSN

Dir-Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

Extent 1

Allocation for a file in a sub-directory
with more than 8 data fragments
(Alloc sect holds 128 LSN+size pairs)

Dir-Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

ALLOC
 SECT

Alloc-LSN
Alloc-LSN
 .
 .
 .
Alloc-LSN
Alloc-LSN

Extent 2

Extent n-1

Extent n

 *
 *
*

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

HPFS Superblock infoHPFS Superblock info

Data-bitmap
Data-bitmap

Data-bitmapBitmap Table

Badblock list
Directory block
Directory block
Directory block
Directory block
Directory block
Directory block
Directory blockDirectory

 bitmap

Information in the superblock will only
change with a FORMAT or a CHKDSK
being run on the filesystem

Superblock

Root-LSN
Bitmap table
Badblock list
Direct band
Direct bitmap

HPFS version
Last CHKDSK
Last Optimize
HPFS V-name

UserId table
(HPFS386)

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

HPFS Spareblock infoHPFS Spareblock info

Spareblock

Hotfix list
Codepage info

Spare dirblock
Spare dirblock

Super+Spare
Checksums

DIRTY status

Directory block
Directory block

Directory block

CP-info

CP-data
CP-data

Hotfix list

Information in the spareblock may change
at any time the filesystem is mounted
(as indicated by a 'DIRTY' status)

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

New Technology File SystemNew Technology File System

 Design started as new FS for OS/3 (32-bit OS/2)
before that was renamed to Windows NT

 Organisation like a database, everything, including
the FS administration itself is a FILE represented
by an entry in the Master File table (MFT)

 Can handle extreme sizes due to 64 bit values used

 All data represented by attribute values, with the data
being the 'default data attribute'. Supports
multiple data-streams for a single file.

 Has native support for OS/2 EA's (as MFT attribute)

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

NTFS limitsNTFS limits

 FS-size upto 2^64 clusters by design
 Some tools limited to 2048 GiB due to use of

32 bits for sector or cluster numbers

 Allocation in clusters of typically 8 sectors
 MFT record typical size is 2 KiB

 May hold all data for small files. Larger attributes are
stored externally, using runlists for the allocated space

 Filename of unlimited length, limited by the OS
itself to a length of 254 characters

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

NTFS FeaturesNTFS Features

 Uses UNICODE for filenames to allow for
any character set (like codepages in HPFS)

 The FS keeps a transaction-LOG of all changes
to the FS-structures to allow quick recovery and
guarantee a consistent filesystem.

 This makes it a journalling filesystem
 File data itself is NOT part of the journal,

so may get lost/damaged after a crash!

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

NTFS Volume layoutNTFS Volume layout

Spare-Boot-Rec

MFT zone

MFT-file fragment

 Bootsector with NTFS bootcode
 Some fixed volume-information,

pointer to MFT and MFT-spare

 MFT zone is reserved to reduce
fragmentation of the MFT, but will
be used for data if FS gets full

 MFT itself is a regular file, so CAN
and WILL get fragmented

 Rest of space is for all external
attributes, not stored in the MFT
records themselves ...

MFT-file fragment

Boot-Record

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

NTFS special filesNTFS special files

 0 = $MFT Main MFT file, all files/dirs
 1 = $MFTmirr Mirror MFT file, 1st 4 entries
 2 = $LogFile Journalling logfile
 3 = $Volume Global volume information
 4 = $AttrDef Definitions for attribute values
 5 = \ Root directory
 6 = $Bitmap Allocation bitmap
 7 = $Boot Bootrecord (8 KiB at sect 0)
 8 = $BadClus Bad cluster administration
 9 = $Secure Global Security information
 A = $Upcase Collating and uppercase info
 B = $Extend Extended info (NTFS 5, XP)

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

MFT special file remarksMFT special file remarks

 Special files upto MFT-A are fixed, and standard

 MFT B represents a directory with (for XP):

 $ObjId Object identification data
 $Quota User space restriction data
 $Reparse Reparse points, aliases in the

filesystem, much like Unix/Linux
soft-links (or WPS shadows)

 MFT numbers upto arround 1A are reserved for
system file use by the FS itself, after that
the first user files will appear

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

MFT record layoutMFT record layout

 The MFT record is of a fixed size (1 KiB)
that starts with a fixed header containing:

 Unique signature string 'FILE'
 Sequence, generation and 'fixup' information
 Offset to first dynamic attribute in the record (0x38)
 Type of the MFT-record, either File or Directory

 After this a dynamic list of variable sized
attributes follows, these can be either:

 Internal (Self contained) when small
 External, using an allocation run-list pointing to one

or more clusters being used for the data

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

MFT attributes MFT attributes (from $AttrDef)(from $AttrDef)

 10 = $STANDARD_INFORMATION
 20 = $ATTRIBUTE_LIST (group of attributes)
 30 = $FILE_NAME
 40 = $OBJECT_ID
 50 = $SECURITY_DESCRIPTOR
 60 = $VOLUME_NAME
 70 = $VOLUME_INFORMATION
 80 = $DATA (default or named data stream)
 90 = $INDEX_ROOT (B-tree root, directories)
 A0 = $INDEX_LOCATION
 B0 = $BITMAP
 C0 = $REPARSE_POINT
 D0 = EA_INFORMATION
 E0 = EA (actual OS/2 extended attribute data)
 100 = LOGGED_UTILITY_STREAM

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

Journalled File SystemJournalled File System

 Designed by IBM for its AIX operating system

 Based on UNIX-like structure with journalling
and multiple storage area capabilities

 Ported to an OS/2 IFS by IBM to allow huge
expandable filesystems with good performance
and journalling (fast crash recovery)

 Port released as 'open source' for Linux too

 Relies on LVM for some of its functionality

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

JFS Volume layoutJFS Volume layout

FSCK work area

 Bootsector, standard (label etc)

 JFS specific volume data with
pointers to lots of info :-)

 Duplicate of main superblock

 Actual contents is grouped in
'aggregates' of fixed size
Layout of that to be refined

 The 'journal' file area

 Temporary space for CHKDSK

Dir and File data

Inode bitmap

Boot-Record (0)

Superblock (40)

Superblock (78)

Inline log area

Inode table

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

Extended 2nd FS, EXT2, EXT3Extended 2nd FS, EXT2, EXT3

 Designed by the Linux community

 Based on UNIX-like structures (BSD) with many
optimizations for speed and new features

 No current port for OS/2 (LVM compatible)

 Like JFS and other Unix derivates, there is
NO redundant filename info in the Inodes,
making file recovery much more difficult.

 EXT3 adds a journalling file to EXT2

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

EXT2/3, Directories and InodesEXT2/3, Directories and Inodes

 Directories are ordinary files, containing a
mapping between filenames and Inodes.

 There can be more than one directory entry
pointing to the SAME Inode! (hard links)

 The Inode contains file attributes including
ownership and a lists of allocated blocks.

 12 direct blocks, for files of upto 12 blocks
 Indirect, double indirect and triple-indirected blocks

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

EXT2/3 Volume layoutEXT2/3 Volume layout

 Bootsector, normally empty
my contain GRUB or LILO
(is at start of the 1st block)

 Volume divided up in block-groups
with identical layout, each having:

 A superblock copy, can be sparse
meaning that not every group has
a copy of the superblock

 Group description data
 Allocation bitmap for this group
 Usage bitmap for the inodes
 Fixed size Inode table for the group
 Rest of group are data blocks

Dir and File data

Inode bitmap

Boot-Record (0)
Superblock

Group descriptors
Block bitmap

Inode table

Dir and File data

Inode bitmap

Superblock

Group descriptors

Block bitmap

Inode table

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

ReiserFSReiserFS

 Designed by Hans Reiser

 Based on a database model using a single large
tree of information 'nodes'.

 The keys for the nodes uniquely identify them
and also determine the sequence in the file

 Space efficient since the nodes are variable in
size, and blocks can be filled up to 100%
(blocks may contain data for multiple files)

 Reiser includes a journalling mechanism

 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser © 2007 JvW

ReiserFS Volume layoutReiserFS Volume layout

 Bootsector, normally empty
my contain GRUB or LILO

 (is at start of the 1st block)

 There is just ONE superblock

 Volume divided up in equal sized
chunks, that can be described with
a bitmap of exactly ONE block

 (32768 blocks for 4Kb blocksize)

 Rest of the blocks contain tree
nodes and leaves, with keys and
data-areas that contain all directory
and file data for the volume.

Dir and File data

Boot-Record (0)

Superblock

Block bitmap

Dir and File data

Block bitmap

Dir and File data

Block bitmap

On-disk filesystem structuresOn-disk filesystem structures

Questions ?Questions ?

