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Presentation contentsPresentation contents

 Generic filesystem architecture

 FAT, File Allocation Table

 HPFS, High Performance FileSystem

 NTFS, New Technology FileSystem

 JFS, Journalled File System

 EXT2 and EXT3 Linux filesystems

 ReiserFS, Linux filesystem
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Who am I ?Who am I ?

 Jan van Wijk      
 Software Engineer, C, Rexx, Assembly
 Founded FSYS Software in 2001
 First OS/2 experience in 1987, developing parts 

of OS/2 1.0 EE  (Query Manager, later DB2)
 Used to be a systems-integration architect at a 

large bank, 500 servers and 7500 workstations

 Home page: http://www.dfsee.com
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Information in a filesystemInformation in a filesystem

 Generic volume information
 Bootsector, superblocks, special files ...

 File and directory descriptive info
 Directories, FNODEs, INODEs, MFT
 Hierachy of files/directories

 Freespace versus used areas
 Allocation-table, bitmap

 Used areas for each file/directory
 Allocation-table, run-list, bitmap
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File Allocation TableFile Allocation Table

 The FAT filesystem was derived from older 
CPM filesystems for the first (IBM) PC

 Designed for diskettes and small harddisks
 Later expanded with sub-directory support 

to allow larger hierarchical filesystems

 Supported natively by the OS/2 kernel
 Enhancements in installable filessystems

like FAT32.IFS and VFAT.IFS
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FAT(16) Volume layoutFAT(16) Volume layout

Boot-Record

Data area

Root-Directory

2nd FAT area

1st FAT area

 Bootsector, bootcode, labels
and geometry/size info (BPB)

 File Allocation table, 12/16 bits
for every cluster in the volume

 Exact duplicate of 1st FAT

 Fixed size, fixed position

 First data located at cluster 2
 Has clusters of filedata as well

as clusters with sub-directories
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The Allocation TableThe Allocation Table

 The actual File Allocation Table has ONE value 
for every allocation unit (cluster):

 Free, the cluster is NOT in use, value is 0 (zero)
 2 .. max, location of the NEXT cluster in the chain
 EOF, end of file, this is the last cluster in the chain
 BAD, the cluster is unusable due to bad sectors

 Each value can be 12 bits, 16 bits or 32 bits
depending on volume and cluster size.

 A directory entry points to the FIRST cluster of 
an 'allocation chain'
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FAT Allocation ChainFAT Allocation Chain

 1cluster.dat 12

 anyfile.doc 23

 2cluster.dat 31
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 ?eleted.txt 127
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FAT directory entriesFAT directory entries

 A basic FAT directory entry contains:
 8 character BASE filename
 3 character file extension
 1 byte attribute with RO, System, Hidden etc
 4 byte date and time information
 2 bytes (16-bit) cluster-number for FIRST cluster
 4 bytes (32-bit) filesize, maximum value 2 Gb

 OS/2, FAT32 and VFAT may add:
 2 bytes index value to OS2 extended-attributes
 2 bytes extra cluster number, making it 32-bit
 Extra create/access date and time fields (VFAT)
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Common problems with FATCommon problems with FAT

 Combined file-allocation and freespace
administration (no redundancy) may cause:

 Lost clusters, allocated but no directory link
 Cross-links, clusters that are in more than 1 chain
 Undelete will be UNRELIABLE for fragmented files

because the cluster allocation is unknown after the
file is erased. (clusters marked FREE)

 OS/2 specific EA related problems: 
 stored in one huge file “EA DATA . SF”
 Linked from an index in the FAT directory entry, can

be damaged by other OS's or defragmenters
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FAT32 Volume layoutFAT32 Volume layout

Spare-Boot (6-7)

Data area

2nd FAT area

1st FAT area

 Bootsector, bootcode, label, geo
and size info (BPB). Location of 
Root directory, freespace size

 File Allocation table, 32 bits
for every cluster in the volume

 Exact duplicate of 1st FAT

 First data located at cluster 2
(usually the Root directory)

 Has clusters of filedata as well
as clusters with directories

Boot-Record (0-1)



 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser  © 2007 JvW

High Performance File SystemHigh Performance File System

 Designed by MS and IBM to overcome the
shortcommings of the FAT filesystem

 Based on UNIX-like Fnodes and B-trees

 Designed for larger harddisks ( > 100 MiB)

 More redundancy, less sensitive to crashes
 B-trees, fragmentation is less of a problem

 Implemented as Installable Filesystem with
dedicated caching (HPFS.IFS, HPFS386.IFS)
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HPFS Features and limitsHPFS Features and limits

 FS-size upto 2 terabyte (2048 GiB) by design
 OS/2 implementation limit of 64 GiB due to

shared cache design (5 bits of 32 for cache use)

 Allocation in single 512-byte sectors

 Filename maximum length of 254 characters
 Support for multiple codepages for filenames

 B-trees used for allocation and directories

 Multi-level cache: Paths, Directories and Data
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HPFS Volume layoutHPFS Volume layout

Boot-Record

Data area

Superblock (10)
Spareblock (11)

Volume Admin

Bitmap tables (14)

 Bootsector with HPFS bootcode
 Fixed volume-information

pointer to Root-directory
 Variable volume-information

 Division in 8 MiB data bands
 Codepage, Hotfix, Spare etc

 Pre-allocated DIR-blocks, 1%
in middle of volume (max 800 Mb)

 Separate Directory-BITMAP

 Filedata + extra allocation and
directory blocks when needed

Directory band

Bitmap
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HPFS  data-bands layoutHPFS  data-bands layout

 Data Bands:

 Are of a FIXED size of 8 MiB
(128 per gigabyte partition size)

 Each have a freespace BITMAP
that are located at the start or at
the end (alternating) so they are
back-to-back

 Maximum UNFRAGEMENTED
filesize is almost 16 MiB

Data band (8 MiB)

Bitmap (2 KiB) 

Data band (8 MiB)

Bitmap (2 KiB) 

Data band (8 MiB)

Bitmap (2 KiB) 



 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser  © 2007 JvW

HPFS File allocationHPFS File allocation

Superblock

   Root-LSN FNODE
   (dir)
Alloc-LSN

FNODE
   (file)
Alloc-LSN
Alloc-LSN

Dir-Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

Data-extent-1

Data-extent-2

Allocation example for a
file in the root directory
with 2 data fragments
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HPFS Fnode layoutHPFS Fnode layout

 An Fnode is 512 bytes with fixed size info:
 Unique binary signature string 'ae 0a e4 f7'
 Sectornumber (LSN) for Parent directory
 First 15 characters of the filename (short name)
 Length of filename, and length of the filedata
 Type of the Fnode, either File or Directory
 Allocation information, max of 8 LSN+size pairs
 DASD limits (user quota, HPFS386 only)

 Then, variable sized info may be present,
either in the Fnode itself or externally:

 Extended-attribute data (.longname, .icon etc)
 Access Control Lists (HPFS386 only) 
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HPFS DirBlock layoutHPFS DirBlock layout

 A DirBlock is 2048 bytes with fixed size info:
 Unique binary signature string 'ae 0a e4 77'
 LSN for Parent and type Fnode or DirBlock (B-tree)
 Sectornumber for THIS Directory-Block
 Number of changes since creation of the block

 Then, variable sized Directory info with:
 A B-tree 'down' pointer (DirBlock LSN),  OR
 Three date/time fields creation, modify, last access
 The standard (FAT, SHRA) attributes
 File data length and extended-attribute length
 Codepage number to use with the filename
 Variable sized filename, max 254 characters
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HPFS Fragmented FileHPFS Fragmented File

FNODE
   (dir)
Alloc-LSN

FNODE
   (file)
Alloc-LSN

Dir-Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

Extent 1

Allocation for a file in a sub-directory
with more than 8 data fragments
(Alloc sect holds 128 LSN+size pairs)

Dir-Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

ALLOC
 SECT

Alloc-LSN
Alloc-LSN
       .
       .
       .
Alloc-LSN
Alloc-LSN

Extent 2

Extent n-1

Extent n

  *
 *
*
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HPFS Superblock infoHPFS Superblock info

Data-bitmap
Data-bitmap

Data-bitmapBitmap Table

Badblock list
Directory block
Directory block
Directory block
Directory block
Directory block
Directory block
Directory blockDirectory

  bitmap

Information in the superblock will only
change with a FORMAT or a CHKDSK
being run on the filesystem

Superblock

Root-LSN
Bitmap table
Badblock list
Direct band
Direct bitmap

HPFS version
Last CHKDSK
Last Optimize
HPFS V-name

UserId table
(HPFS386)
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HPFS Spareblock infoHPFS Spareblock info

Spareblock

Hotfix list
Codepage info

Spare dirblock
Spare dirblock

Super+Spare
Checksums

DIRTY status

Directory block
Directory block

Directory block

CP-info

CP-data
CP-data

Hotfix list

Information in the spareblock may change
at any time the filesystem is mounted
(as indicated by a 'DIRTY' status)
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New Technology File SystemNew Technology File System

 Design started as new FS for OS/3 (32-bit OS/2)
before that was renamed to Windows NT

 Organisation like a database, everything, including 
the FS administration itself is a FILE represented 
by an entry in the Master File table (MFT)

 Can handle extreme sizes due to 64 bit values used

 All data represented by attribute values, with the data 
being the 'default data attribute'. Supports
multiple data-streams for a single file.

 Has native support for OS/2 EA's (as MFT attribute)
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NTFS limitsNTFS limits

 FS-size upto 2^64 clusters by design
 Some tools limited to 2048 GiB due to use of

32 bits for sector or cluster numbers

 Allocation in clusters of typically 8 sectors
 MFT record typical size is 2 KiB

 May hold all data for small files. Larger attributes are  
stored externally, using runlists for the allocated space

 Filename of unlimited length, limited by the OS
itself to a  length of 254 characters
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NTFS FeaturesNTFS Features

 Uses UNICODE for filenames to allow for
any character set (like codepages in HPFS)

 The FS keeps a transaction-LOG of all changes 
to the FS-structures to allow quick recovery and 
guarantee a consistent filesystem.

 This makes it a journalling filesystem
 File data itself is NOT part of the journal,

so may get lost/damaged after a crash!
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NTFS Volume layoutNTFS Volume layout

Spare-Boot-Rec

MFT zone

MFT-file fragment

 Bootsector with NTFS bootcode
 Some fixed volume-information,

pointer to MFT and MFT-spare

 MFT zone is reserved to reduce 
fragmentation of the MFT, but will
be used for data if FS gets full

 MFT itself is a regular file, so CAN 
and WILL get fragmented

 Rest of space is for all external
attributes, not stored in the MFT
records themselves ...

MFT-file fragment

Boot-Record
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NTFS special filesNTFS special files

 0 = $MFT Main MFT file, all files/dirs
 1 = $MFTmirr Mirror MFT file, 1st 4 entries
 2 = $LogFile Journalling logfile
 3 = $Volume Global volume information
 4 = $AttrDef Definitions for attribute values
 5 = \ Root directory
 6 = $Bitmap Allocation bitmap
 7 = $Boot Bootrecord (8 KiB at sect 0)
 8 = $BadClus Bad cluster administration
 9 = $Secure Global Security information
 A = $Upcase Collating and uppercase info
 B = $Extend Extended info (NTFS 5, XP)
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MFT special file remarksMFT special file remarks

 Special files upto MFT-A are fixed, and standard

 MFT B represents a directory with (for XP):

 $ObjId Object identification data
 $Quota User space restriction data
 $Reparse Reparse points, aliases in the 

filesystem, much like Unix/Linux
soft-links (or WPS shadows)

 MFT numbers upto arround 1A are reserved for 
system file use by the FS itself, after that
the first user files will appear
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MFT record layoutMFT record layout

 The MFT record is of a fixed size (1 KiB)
that starts with a fixed header containing:

 Unique signature string 'FILE'
 Sequence, generation and 'fixup' information
 Offset to first dynamic attribute in the record (0x38)
 Type of the MFT-record, either File or Directory

 After this a dynamic list of variable sized
attributes follows, these can be either:

 Internal (Self contained) when small
 External, using an allocation run-list pointing to one

or more clusters being used for the data
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MFT attributes MFT attributes (from $AttrDef)(from $AttrDef)

  10 = $STANDARD_INFORMATION
  20 = $ATTRIBUTE_LIST (group of attributes)
  30 = $FILE_NAME
  40 = $OBJECT_ID
  50 = $SECURITY_DESCRIPTOR
  60 = $VOLUME_NAME
  70 = $VOLUME_INFORMATION
  80 = $DATA (default or named data stream)
  90 = $INDEX_ROOT (B-tree root, directories)
  A0 = $INDEX_LOCATION
  B0 = $BITMAP
  C0 = $REPARSE_POINT
  D0 = EA_INFORMATION
  E0 = EA (actual OS/2 extended attribute data)
 100 = LOGGED_UTILITY_STREAM
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Journalled File SystemJournalled File System

 Designed by IBM for its AIX operating system

 Based on UNIX-like structure with journalling
and multiple storage area capabilities

 Ported to an OS/2 IFS by IBM to allow huge
expandable filesystems with good performance 
and journalling (fast crash recovery)

 Port released as 'open source' for Linux too 

 Relies on LVM for some of its functionality
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JFS Volume layoutJFS Volume layout

FSCK work area

 Bootsector, standard (label etc)  

 JFS specific volume data with
pointers to lots of info :-)

 Duplicate of main superblock

 Actual contents is grouped in
'aggregates' of fixed size
Layout of that to be refined

 The 'journal' file area

 Temporary space for CHKDSK

Dir and File data

Inode bitmap

Boot-Record (0)

Superblock (40)

Superblock (78)

Inline log area

Inode table
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Extended 2nd FS, EXT2, EXT3Extended 2nd FS, EXT2, EXT3

 Designed by the Linux community

 Based on UNIX-like structures (BSD) with many 
optimizations for speed and new features

 No current port for OS/2 (LVM compatible)

 Like JFS and other Unix derivates, there is
NO redundant filename info in the Inodes,
making file recovery much more difficult.

 EXT3 adds a journalling file to EXT2



 FS-info: FAT, HPFS, NTFS, JFS, EXT2, Reiser  © 2007 JvW

EXT2/3, Directories and InodesEXT2/3, Directories and Inodes

 Directories are ordinary files, containing a 
mapping between filenames and Inodes.

 There can be more than one directory entry
pointing to the SAME Inode! (hard links)

 The Inode contains file attributes including 
ownership and a lists of allocated blocks.

 12 direct blocks, for files of upto 12 blocks
 Indirect, double indirect and triple-indirected blocks
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EXT2/3 Volume layoutEXT2/3 Volume layout

 Bootsector, normally empty
my contain GRUB or LILO 
(is at start of the 1st block)

 Volume divided up in block-groups
with identical layout, each having:

 A superblock copy, can be sparse
meaning that not every group has
a copy of the superblock

 Group description data
 Allocation bitmap for this group
 Usage bitmap for the inodes
 Fixed size Inode table for the group
 Rest of group are data blocks

Dir and File data

Inode bitmap

Boot-Record (0)
Superblock

Group descriptors
Block bitmap

Inode table

Dir and File data

Inode bitmap

Superblock

Group descriptors

Block bitmap

Inode table
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ReiserFSReiserFS

 Designed by Hans Reiser

 Based on a database model using a single large 
tree of information 'nodes'.

 The keys for the nodes uniquely identify them 
and also determine the sequence in the file

 Space efficient since the nodes are variable in 
size, and blocks can be filled up to 100%
(blocks may contain data for multiple files)

 Reiser includes a journalling mechanism
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ReiserFS Volume layoutReiserFS Volume layout

 Bootsector, normally empty
my contain GRUB or LILO 

 (is at start of the 1st block)

 There is just ONE superblock

 Volume divided up in equal sized 
chunks, that can be described with 
a bitmap of exactly ONE block 

 (32768 blocks for 4Kb blocksize)

 Rest of the blocks contain tree 
nodes and leaves, with keys and 
data-areas that contain all directory 
and file data for the volume.

Dir and File data

Boot-Record (0)

Superblock

Block bitmap

Dir and File data

Block bitmap

Dir and File data

Block bitmap
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