Jan van Wijk

Filesystem on-disk structures for
FAT, HPFS, NTFS and JFS

FSYS cavliman

Presentation contents

Generic filesystem architecture

FAT, File Allocation Table

HPFS, High Performance FileSystem
NTFS, New Technology FileSystem

Examples using DFSee ...

On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

% DI S

Who am | ?

Jan van Wijk

= Software Engineer, C, Rexx, Assembly

= Founded FSYS Software in 2001

= First OS/2 experience in 1987, developing parts
of 0S/2 1.0 EE (Query Manager, later DB2)

= Used to be a systems-integration architect at a
large bank, 500 servers and 7500 workstations

Home page: http://www.dfsee.com

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

J
|

Information in a filesystem

= (Generic volume information
= Bootsector, superblocks, special files ...

= File and directory descriptive info

= Directories, FNODEs, INODEs, MFT
= Hierachy of files/directories

- Freespace Versus used areas
= Allocation-table, bitmap

= Used areas for each file/directory
= Allocation-table, run-list, bitmap

FSYS - s On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

% DI S

File Allocation Table

= The FAT filesystem was derived from older
CPM filesystems for the first (IBM) PC

= Designed for diskettes and small harddisks

= Later expanded with sub-directory support
to allow larger hierarchical filesystems

= Supported natively by the OS/2 kernel
= Enhancements in installable filessystems
like FAT32.IFS and VFAT.IFS

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

FAT(16) Volume layout

= Bootsector, bootcode, labels
and geometry/size info (BPB)
= File Allocation table, 12/16 bits
for every cluster in the volume
= Exact duplicate of 1* FAT

= Fixed size, fixed position
= First data located at cluster 2

= Has clusters of filedata as well
as clusters with sub-directories

FSYS - swn On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JVW o PANATR

The Allocation Table

= The actual File Allocation Table has ONE value

for every allocation unit (cluster):
= Free, the cluster is NOT in use, value is O (zero)
= 2 .. max, location of the NEXT cluster in the chain
= EOF, end of file, this is the last cluster in the chain
= BAD, the cluster is unusable due to bad sectors

= Each value can be 12 bits, 16 bits or 32 bits
depending on volume and cluster size.

= A directory entry points to the FIRST cluster of
an 'allocation chain'

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

FAT Allocation Chain

Directory entries Part of the FAT area

1cluster.dat (12 EO (16) (Eop) 10

: R
anyfile.doc | 23 - @ 20

2cluster.dat | 31 J| — (32) (EOF) 30

?eleted.txt | 127 40

127 /(441(15)
fragment.c ?‘ 50

2 3 4 5 6

FSYS - s On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW B DTG

EAT directory entries

= A basic FAT directory entry contains:

= 8 character BASE filename

= 3 character file extension

= 1 byte attribute with RO, System, Hidden etc

= 4 pyte date and time information

= 2 bytes (16-Dbit) cluster-number for FIRST cluster
= 4 bytes (32-bit) filesize, maximum value 2 Gb

= 0S/2, FAT32 and VFAT may add:

= 2 bytes index value to OS2 extended-attributes
= 2 bytes extra cluster number, making it 32-bit
= EXxtra create/access date and time fields (VFAT)

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

Common problems with FAT

= Combined file-allocation and freespace

administration (no redundancy) may cause:

= Lost clusters, allocated but no directory link

= Cross-links, clusters that are in more than 1 chain

= Undelete will be UNRELIABLE for fragmented files
because the cluster allocation is unknown after the
file Is erased. (clusters marked FREE)

= OS/2 specific EA related problems:

= stored in one huge file “EA DATA . SF”
= Linked from an index in the FAT directory entry, can
be damaged by other OS's or defragmenters

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

FAT32 Volume layout

= Bootsector, bootcode, label, geo
and size info (BPB). Location of
Root directory, freespace size

= File Allocation table, 32 bits
for every cluster in the volume

= Exact duplicate of 1% FAT

= First data located at cluster 2
(usually the Root directory)

= Has clusters of filedata as well
as clusters with directories

FSYS - siwu On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JVW B HI G

High Pertormance Elile System

= Designed by MS and IBM to overcome the
shortcommings of the FAT filesystem

= Based on UNIX-like Fhodes and B-trees
= Designed for larger harddisks (> 100 MiB)

= More redundancy, less sensitive to crashes
= B-trees, fragmentation is less of a problem

= Implemented as Installable Filesystem with
dedicated caching (HPFS.IFS, HPFS386.IFS)

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

FSYS cavliman

HPFS Features and limits

FS-size upto 2 terabyte (2048 GiB) by design
0OS/2 implementation limit of 64 GIB due to
shared cache design (5 bits of 32 for cache use)

Allocation In single 512-byte sectors

Filename maximum length of 254 characters
Support for multiple codepages for filenames

B-trees used for allocation and directories

Multi-level cache: Paths, Directories and Data

On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & DI G

HPES Volume layout

= Bootsector with HPFS bootcode

Boot-Record = Fixed volume-information

) pointer to Root-directory

Superblock (10) = Variable volume-information
Spareblock (11)

y,

= Division in 8 MIB data bands
= Codepage, Hotfix, Spare etc

Volume Admin

= Pre-allocated DIR-blocks, 1%
In middle of volume (max 800 Mb)
= Separate Directory-BITMAP

Data area

= Filedata + extra allocation and
directory blocks when needed

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

= Data Bands:

. Are of a FIXED size of 8 MiB
Data band (8 MiB) (128 per gigabyte partition size)

. S
@)

Data band (8 MiB)

= Each have a freespace BITMAP
that are located at the start or at

) the end (alternating) so they are
back-to-back

.

é Y
Bitmap (2 KiB)

Data band (8 MiB) = Maximum UNFRAGEMENTED
\ / filesize is almost 16 MIB

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

llocation

T
T
1
§p
E
)
Qb

Allocation example for a
file in the root directory
with 2 data fragments

FNODE
(dir)
Alloc-LSN

FNODE
(file) Data-extent-1
Alloc-LSN
Data-extent-2

FSYS - s On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW B DTG

Alloc-LSN

HPFS Fnode layout

= An Fnode is 512 bytes with fixed size info:
= Unique binary signature string 'ae Oa e4 7'
= Sectornumber (LSN) for Parent directory
= First 15 characters of the filename (short name)
= Length of filename, and length of the filedata
= Type of the Fnode, either File or Directory
= Allocation information, max of 8 LSN+size pairs
= DASD Ilimits (user quota, HPFS386 only)

= Then, variable sized info may be present,

either in the Fnode itself or externally:

= Extended-attribute data (.longname, .icon etc)
= Access Control Lists (HPFS386 only)

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

/)

C

HPFES DirBlock layout

= A DirBlock i1s 2048 bytes with fixed size Info:

= Unigue binary signature string '‘ae Oae4 77"

= LSN for Parent and type Fnode or DirBlock (B-tree)
= Sectornumber for THIS Directory-Block

= Number of changes since creation of the block

= Then, variable sized Directory info with:

= A B-tree 'down' pointer (DirBlock LSN), OR

= Three date/time fields creation, modify, last access
= The standard (FAT, SHRA) attributes

= File data length and extended-attribute length

= Codepage number to use with the filename

= Variable sized filename, max 254 characters

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

Allocation for a file in a sub-directory
with more than 8 data fragments
(Alloc sect holds 128 LSN+size pairs)

‘ Extent 2

*

~(en

FSYS - s On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW B DTG

HPFS Superblock info

/F
D e (D

Badblock list

Information in the superblock will only
change with a FORMAT or a CHKDSK
being run on the filesystem

FSYS - s On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW B DTG

Information in the spareblock may change
at any time the filesystem is mounted
(as indicated by a 'DIRTY" status)

FSYS - s On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW B DTG

New Technology File System

Design started as new FS for OS/3 (32-bit 0S/2)
before that was renamed to Windows NT

= QOrganisation like a database, everything, including the
FS administration itself is a FILE represented by an
entry in the Master File table (MFT)

= (Can handle extreme sizes due to 64 bit values used
= All data represented by attribute values, with the data
being the 'default data attribute'. Supports

multiple data-streams for a single file.

= Has native support for OS/2 EA's (as MFT attribute)

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

NTFS limits

FS-size upto 2764 clusters by design
= Some tools limited to 2048 GiB due to use of
32 bits for sector or cluster numbers

Allocation in clusters of typically 8 sectors

MFT record typical size is 2 KiB
= May hold all data for small files. Larger attributes are
stored externally, using runlists for the allocated space

Filename of unlimited length, limited by the OS
itself to a length of 254 characters

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

NTFS Featur

Q“

—~
)

m

= Uses UNICODE for filenames to allow for
any character set (like codepages in HPFS)

= The FS keeps a transaction-LOG of all changes
to the FS-structures to allow quick recovery and
guarantee a consistent filesystem.

* This makes it a journalling filesystem

= File data itself is NOT part of the journal,
sSo may get lost/damaged after a crash!

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

NTES Volume layou

(Boot-Record)

r

N
MFT-file fragment
MFT-file fragment

MFT zone

(Spare-Boot-Rec)

FSYS cavliman

Bootsector with NTFS bootcode
Some fixed volume-information,
pointer to MFT and MFT-spare

MFT zone is reserved to reduce
fragmentation of the MFT, but will
be used for data if FS gets full

MFT itself is a regular file, so CAN
and WILL get fragmented

Rest of space Is for all external
attributes, not stored in the MFT
records themselves ...

On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & DI G

\
\\
\

J=5

= 0 =$MFT

= 1 =$MFTmirr
= 2 =9%LogFile
= 3 =%Volume
= 4 = SAttrDef

= 5=\

= 6 =%Bitmap

= 7 = $Boot

= 8 =%BadClus
= 9 =3%Secure

= A =3%Upcase
= B =$Extend

SpEeci

IRIES

QD

]

Main MFT file, all files/dirs
Mirror MFT file, 1% 4 entries
Journalling logdfile

Global volume information
Definitions for attribute values
Root directory

Allocation bitmap
Bootrecord (8 KiB at sect 0)
Bad cluster administration
Global Security information
Collating and uppercase info
Extended info (NTFS 5, XP)

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

= Special files upto MFT-A are fixed, and standard

= MFT B represents a directory with (for XP):

= $0Dbjld Object identification data
= $Quota User space restriction data
= $Reparse Reparse points, aliases in the

filesystem, much like Unix/Linux
soft-links (or WPS shadows)

= MFT numbers upto arround 1A are reserved for
system file use by the FS itself, after that
the first user files will appear

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

MFT record layout

= The MFT record is of a fixed size (1 KiB)

that starts with a fixed header containing:

= Unique signature string 'FILE'

= Sequence, generation and 'fixup' information

= Offset to first dynamic attribute in the record (0x38)
= Type of the MFT-record, either File or Directory

= After this a dynamic list of variable sized

attributes follows, these can be either:

= Internal (Self contained) when small
= External, using an allocation run-list pointing to one
or more clusters being used for the data

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

MFET attributes (from $AttrDef)

= 10 =3$STANDARD INFORMATION

= 20 =S RERIBEUNE NSIR(giolsefatimloiies)
= 30 =S3$FILE NAME

= 40 =3%$OBJECT_ID

= 500 = SSECUR|A " BESCRIPTOR

= 60 =3$VOLUME_NAME

= 70 =$VOLUME_INFORMATION

= 80 =3$DATA (default or named data stream)

= 90 =3$INDEX ROOT (B-tree root, directories)
= A0 =$INDEX LOCATION

= BO =3$BITMAP

= CO =3$REPARSE_POINT

= DO =EA INFORMATION

= EO = EA (actual OS/2 extended attribute data)
= 100 =LOGGED UTILITY_STREAM

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

Journalled File System

= Designed by IBM for its AlX operating system

= Based on UNIX-like structure with journalling
and multiple storage area capabillities

= Ported to an OS/2 IFS by IBM to allow huge
expandable filesystems with good performance
and journalling (fast crash recovery)

= Port released as 'open source' for Linux too

= Relies on LVM for some of its functionality

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

JFS Volume layout

(Boot-Record (0))

(Superblock (40))

(Superblock (78))

Inode table

Dir and File data

.

()
Inode bitmap

S

(Inline log area)

(FSCK work area)

Bootsector, standard (label etc)
JFS specific volume data with
pointers to lots of info :-)
Duplicate of main superblock
Actual contents is grouped In
‘aggregates’ of fixed size
Layout of that to be refined

The 'journal’ file area

Temporary space for CHKDSK

FSYS - st On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW & NG

On-disk filesystem structures

Questions ?

