

Porting QT5 Applications to OS/2Porting QT5 Applications to OS/2
Gregg YoungGregg Young

What is QT?

● Full development framework
● Also called a widget toolkit
● Cross platform
● Pronounced “cute”
● Open source

OS/2 Port and QT5 Applications

● Bitwise Works
● Dmitriy Kuminov
● Community funded
● Elbert Pol
● Gregg Young
● Paul Smedley

Getting What You Need
● Everything is available from the netlabs-rel

RPM repository
● In ANPM set the platform to Pentium 4

● If you aren't using yum or the Arca Noae
Package Manager (ANPM) install ANPM

● https://www.arcanoae.com/resources/downloadables/arca-noae-package-manager/

● ANPM installs the UNIXROOT structure to the disk
you select.

● Since most of the tools you need are from the
UNIX world these structures are needed.

https://www.arcanoae.com/resources/downloadables/arca-noae-package-manager/

Install the Tool Chain
Must Haves

● Compilers and linker
● GCC 9.2 (Netlabs)

– cpp gcc gcc-c++
– gcc-wlink gcc-wrc

● Make Utility
● kbuild-make

Install the Tool Chain
Must Haves 2

● os2tk45
● rpm-build

● binutils diffutils findutils
● file patch tar xz

● Configuration Utility
● cmake

– cmake-data
– cmake-filesystem
– cmake-rpm-macros

Additional Tools Needed for
Some Projects

● kbuild
● os2-base-unixtools-path
● bison – general purpose parser generator
● nasm – x86 assembler
● autoconfig

● m4 perl-Data-Dumper

● GCC 10 and 11 versions
● Paul Smedley

● Not a comprehensive list

Needed Libraries

● libc-devel
● libcx-devel

● exceptq-devel

● libstdc++-devel

Editors

● Something with syntax highlighting
● NEPM

– Not multiprocessor safe (markexe, exeheader)
● EFTE/2

● E can be used for small changes but really is
inadequate for this type of thing

● If you have something multilingual QE can be
useful

Versioning

● git
● git-core git-core-doc
● perl-error perl-git

● subversion
● SmartSVN 7.07
● SmartGit 2.07

Versioning Best Practices
● If the code is in a repository get it from the

repository as opposed to a zip of the source
● If you only have access to a zip create a local

git repository
● git init
● git add files you plan to change and commit

● If you have already made changes to
unversioned source code unzip the the original
in a separate directory create a git repo git add
then copy your changed files in.

QT5 Components

● qt5 qt5-devel
● qt5-qtbase-common qt5-qtbase-devel qt5-

qtbase-gui qt5-qtbase-private-devel qt5-qtbase-
static qt5-qtbase-debuginfo

● qt5-qtdeclarative qt5-qtdeclarative-devel qt5-
qtdeclarative-static qt5-qtdeclarative-debuginfo

● qt5-multimedia qt5-multimedia-devel qt5-
multimedia-debuginfo

● qt5-qtsvg qt5-qtsvg-devel qt5-qtsvg-debuginfo

QT5 Components 2
● qt5-qttools qt5-qttools-common qt5-qttools-

devel qt5-qttools-libs-designer qt5-qttools-libs-
designercomponets qt5-qttools-libs-help qt5-
qttools-static qt5-qttools-debuginfo

● qt5-qtwebchannel qt5-qtwebchannel-devel qt5-
qtwebchannel-debuginfo

● qt5-qtwebengine qt5-qtwebengine-devel qt5-
qtwebengine-debuginfo

● qt5-qtwebsockets qt5-qtwebsockets-devel qt5-
qtwebengine-debuginfo

Other QT5 Tools

● qt5-designer
● qt5-doctools
● qt5-linguist
● qt5-rpm-macros
● qmake-qt5.exe is in qt5-qtbase-devel
● While you won't need all these for many ports it

is easier to install them all then it is figure out
what is missing later.

QT5 Dependencies

● cups-devel
● dbus-libs
● expat-devel
● ffmpeg-libs
● fontconfig-devel
● freetype-devel
● gmp-c++
● gmp-devel

● gnutils-c++
● gnutils-devel
● lame-libs
● libevent
● libmpc
● libogg
● libpng-devel

QT5 Dependencies

● libtasn1-devel
● libtasn1-tools
● libteora
● libvorbis
● libvpx
● libwebp
● libxslt
● minizip

● nettle-devel
● opus
● p11-kit-devel
● pcre2-syntax
● pcre2-utf16
● x254-libs
● xvidcore
● zlib-devel

QT5 Dependencies
(Tools)

● cmake
● cmake-data
● cmake-filesystem
● cmake-rpm-macros
● cpp
● gcc
● gcc-cpp

● gettext
● libstdc++-devel
● mpfr

Building CPPCheck

● Readme.md or sometimes a wiki or web site
will contain the build instructions

● While CPPCheck's instructions in readme.md
were fine some are incomplete/out of date

Needed and Optional Libs

● You need pcre for CPPCheck if you want to
build with rules

● Optional packages are common
● Helpful to us since we don't necessarily have a

given package

● If a package is needed and not at Netlabs try
Hobbes and Paul Smedley's site

● Kalendar (discussed later) requires sqlite-devel
● Failing these you can try to build the package or

ask someone else to build it

Defines
● -DBUILD_GUI=ON is a define that indicates

you want to build the GUI for CPPCheck
● There are generally additional configuration

options in the configuration files
● Accept the default configuration for the first try
● The exceptions are when you don't have an

optional package which is used by default or
you want to build an optional component (the
GUI in this case)

Unix Paths

● Most of the time paths are setup by either Qt or
the C lib which means they will be correct for
the platform

● In some apps the paths are by default UNIX
style but it will usually have code for DOS style
paths #if defined for Windows (__WIN__ or
__WIN32__)

● The fix is to add __OS2__ to that #if def

Preparing to Run Make

● Install all the needed packages
● Review the build instructions

Invoking Make

● Always use verbose make output V=1
● Always redirect the output to a file so you can

review what has happened and search.
● Keep several generations so you can compare

● Can be automated

● After an error restart the build from the directory
where the error occurred if possible

● Try running the failing command from the
command line if possible

Fixing Errors
● Missing header – search the rpm packages for

the header name if found install the package
● If not found search the web for the name. In one

case I had to create the file based on a forum
post

● Missing lib (unresolved symbols) – find the
header that contains the symbol and determine
the lib associated with that header add that lib
to the LIBS = or to the linker command in the
makefile. Also check the lib name particularly
the suffix

Config.h

● Some program have platform specific config.h
files. These specify what the platform has
available. Naturally there won't be one for OS2.
I start with the Linux one and then undefine
(rem out) anything the compiler complains
about. Always undefine anything that sets stuff
as 64bit.

Missing Tools (file not found)
● Search the rpms for the package containing it.
● If not found try Hobbes and Paul Smedley's site
● Is the name wrong – qmake.exe is qmake-

qt5.exe in our qt5 python2.exe is python2.7.exe
● See if there is another option to do the job in

the configuration
● See if what it is doing is part of something that

is optional
● As a last resort build it

CPPCheck Results

● Compiled without error using the cmake
instructions

● Command line version worked as expected
● GUI trapped on startup

● Traced problem to memory mapping code
● However this was really a configuration issue

-lcx had not been added to LIBS =
● Added it to the makefile rebuilt and the GUI ran

as expected

Kalendar Build Issue

● Configuration issue -- the debug build failed
unable to find Qt5Widgetsd.lib

● The failure is caused because the *d.lib and
*d.dll are not in the RPMs

● They do get built. Not in spec file

Kalendar Modifications

● Kalendar used some experimental c++ headers
those headers were no longer experimental as
of gcc 9.2 but require -std=c++17 be set

● Kalendar uses 64bit for its date calculations.
This can be set to 32bit but doing this led to
failures. Leaving it 64bit worked. This only
effects to “date” that signifies that something is
a todo item instead of appointment (year 2038
problem)

Kalendar Password Issue

● Kalendar expected that there would be
password protection on the file system which
didn't work for OS2.

● /* Open the database (will be created if it doesn't exist) */

● #ifndef __OS2__

● this->db_folder = string(getpwuid(getuid())->pw_dir) + string("/" FOLDER_NAME "/");

● #else

● this->db_folder = string(getenv("HOME")) + string("/" FOLDER_NAME "/");

● #endif

Kalendar Scripts

● Kalendar has the capacity to open scripts but
defaulted to either SH or BAT scripts. Changed
this to CMD or BTM scripts.

● #ifdef __OS2__

● if ((p.extension() == ".cmd") || (p.extension() == ".btm"))

● #else

● if ((p.extension() == ".sh") || (p.extension() == ".bat"))

● #endif

Thank You

● Questions
● ygk@qwest.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

