

Programming 102

This is an expansion of Programming 101. Thanks to Gordon
Snider for helping me organize the information in this section.

Programming 102

This presentation will attempt to answer the question
How can a non-programmer learn to write programs for “

OS/2?” This presentation is not a book on programming
but the Table of Contents of a book.

Programming 102

The stumbling block for new programmers is that there are so
many gradients to climb right at the beginning even to get to your
first executable.

And if your first executable doesn't execute where do you start
looking for the problem?

Programming 102

First step -- install the OS/2 toolkit on your computer. It's on the
eCS CD, and it has a wealth of information on programming
OS/2.

Programming 102

Before I recommend books I will say that we've assembled a lot
of books in the Warpstock giveaway. I recommend leaving some
extra room because you will receive a lot of valuable items. If
you can get "Real-World Programming for OS/2 2.1" or "The Art
of OS/2 Warp programming", these are excellent introductions to
programming in OS/2.

Programming 102

You'll want to know the C programming language. There are
good books on it, but writing programs is the best way to learn C.
OS/2 programming usually means C or C++ programming. The
original book "The C programming language" will be available at
second-hand bookstore everywhere. I also found the book

Accelerated C++ to be a good way to learn C++. The examples “ ”
in the books and the toolkit are all in C.

Programming 102

Selecting a compiler from the many available. The free C
compilers for OS/2, GCC and OpenWatcom, are both excellent –
the best ever available for OS/2. I'm sure you will enjoy learning
how to use them if you don't know already.

Programming 102

To add OS/2 functions to the basic C or C++ programs, you
include OS2.H. This header file contains the entire OS/2 API.
These functions are documented in the OS/2 Toolkit Information
folder. But OS/2 programming books are an easier way to
understand the programmers interface to OS/2.

Programming 102

To begin PM programming, it's best to start with a sample
program, and dissect it. This is the approach used by the
programmings books in a previous slide.

A second level would be to implement multi-threaded graphical
window programming, which is something good OS/2 programs
do.

Programming 102

Make is the program that automatically builds almost all OS/2
programs, including PMMail/2 and others. Make is scary to most
novice programmers. Someone who is comfortable with make
will be considered an expert by his peers.

More modern programs have superseded make, but OS/2
examples and programs usually are built with make.

Programming 102

Make is a program that keeps track of all your source code and
builds it into the finished product. It calls the compiler and linker
to do this. The advantage of make is that you can change one or
more source code files, and make will do what is needed to build
the program. The details of running the compiler an linker are
buried in the makefile.

Programming 102

To obtain a complete listing of all the compiler switches, invoke
the compiler without any argument and pipe the result to a file.
That file will have a good list of the compiler switches. The help
file for OpenWatcom has complete help in the User's guide.
However, many of the compiler switches are quite arcane and
usually not relevant to a beginning programmer.

Programming 102

All programs should have some form of help. Help files and books
are created by the Information Presentation Facility. The IPF
Compiler is included in the toolkit.

Programming 102

Then there is the knowledge of OO programming. That's a whole
other branch. Your books will help, and the toolkit, too. You will
learn about classes and objects, and how to make your own
classes based on classes already present in OS/2.

Programming 102

If your first executable doesn't execute where do you start
looking for the problem? I've left debugging for last. Makefiles
usually have a way to build the program for debug by setting
compiler and linker switches. At that point, you run your program
inside the debugger. There is a skill to using the debugger, but
I've found that the easy way to use a debugger is to run your
program until it crashes and then examine the wreckage with the
debugger.

Programming 102

More difficult to debug is the program that does nothing, but
doesn't crash either. There the art of using the debugger to set
break points and watch points which will reveal what is going on
at any given point in the code.

Programming 102

Finally, the art of writing exception handlers and interpreting
process dumps will enable you to find bugs that only occur on
your user's computers.

Programming 102

How to install each of these and 'gotchas' to watch for. How to
check install is correct.

Should also be a plan for mentoring by email after Warpstock is
over.

Programming 102

Subversion, CVS and other source code tools. These aren't
important when learning to program, but they are vital to
participating in a multi-programmer project. We have terrific
versions of these, but I'd like to see a session on mercurial,
which I have not yet used.

Gordon pointed out that he doesn't agree about Subversion not
being important when learning to program. He has already had
REXX projects fail because he couldn't keep track of the different
versions I had created.

Programming 102

Subversion has two parts, a server that provides access to the
repository of stored source code, and the client that allows
access to the server. We have recent ports of the server, and
both command line client access and a marvelous client called
SmartSVN.

Programming 102

Subversion keeps source code in a repository. Every time you
store a changed version of a source code file in the repository,
Subversion keeps track of the changes. You can retrieve any
version of the source file, even if you've changed it hundreds of
times. If you have many source code files, you can go back and
pull out the state of your project from any point in history. This
can be useful when the current version of software doesn't work,
but an old version does.

Programming 102

Programmer's editors are important. There seems to be one
editor per programmer. I use Visual SlickEdit, which was
abandoned with an informal policy that OS/2 users may freely
use the last version that was available. There are too many to list
in this e-mail. But all they do is edit plain text files. Visual
SlickEdit also tags files, and I can right click on anything in the
source code and go to the definition of that thing. We could do a
session just surveying programming editors.

Programming 102

OS/2 programming books are old. When really old books have
examples in the C language, it's possible that some of them have
old-style function declarations.

This is an old-style declaration from Kernighan and Ritchie, 1978.
mai n(ar gc, ar gv)

i nt ar gc;

char * ar gv[];

Now here is the same example from the second edition of the
same book, 1988.
main(int argc, char *argv[])

Some compilers will take the old-style declarations if the proper
compilation options are used.

Programming 102

Thanks, now go write a program.

	Title
	This presentation
	Stumbling
	OS/2 Toolkit
	Books
	C Books
	Compilers
	OS/2 Functions
	PM Programming
	Make
	Make 2
	Compiler switches
	Help
	OOP
	debugging
	break points
	exceptions
	mentoring
	source code
	subversion
	repository
	editor
	standard c
	thanks

